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The density functional based tight-binding (DFTB) method can benefit substantially from a number of
developments in density functional theory (DFT) while also providing a simple analytical proving ground for
new extensions. This contribution begins by demonstrating the variational nature of charge-self-consistent
DFTB (SCC-DFTB), proving the presence of a defined ground-state in this class of methods. Because the
ground state of the SCC-DFTB method itself can be qualitatively incorrect for some systems, suitable forms
of the recent LDA+U functionals for SCC-DFTB are also presented. This leads to both a new semilocal
self-interaction correction scheme and a new physical argument for the choice of parameters in the LDA+U
method. The locality of these corrections can only partly repair the HOMO-LUMO gap and chemical potential
discontinuity, hence a novel method for introducing this further physics into the method is also presented,
leading to exact derivative discontinuities in this theory at low computational cost. The prototypical system
NiO is used as an illustration for these developments.

I. Introduction

As is discussed in several of the contributions to this special
issue, the DFTB method is intended to give a good approxima-
tion to the results of density-functional theory (DFT). Examples
of its application to the solid state,1-5 and molecular systems6

demonstrate the versatility of the method both in its original7

and in self-consistent charge (SCC-DFTB)8 forms, with other
contributions in this special volume presenting details of many
of the recent applications and extensions to these methods.
However, there are several regions of the periodic table that
require particular care when investigating with a DFT-related
approach (the d and f blocks being prime examples) at least in
part from the spurious self-interaction present in many density
functionals. Apparently innocuous systems such as negatively
charged ions or open systems in contact with electron reservoirs
also present challenges, again related to the self-interaction
problems of DFT.

This paper is organized as follows. In section II a short proof
is given that tight-binding computational schemes such as SCC-
DFTB, where terms quadratic in the charge fluctuations are
included in the energy, can actually possess a ground state as
long as the on-site coupling terms are of greater of equal
magnitude to the off site contributions. This is explicitly
demonstrated for the softened Coulombic interaction of the
Klopman-Ohno-Mataga-Nishimoto9-11 model, but also holds
for the more elaborate softened Coulombic interaction currently
used in SCC-DFTB.

Having established that SCC-DFTB actually possesses a
ground state, in section III, we present a new extension of the
SCC-DFTB method to at least qualitatively treat strongly
correlated systems. This leads to a new method for removing

much of the local part of self-interaction, as well as presenting
a new physical recipe for the choice of constants in the LDA+U
method. The equivalence between a form of the pseudo-self-
interaction correction12,13 method and LDA+U is also demon-
strated for the first time.

As discussed recently14,22 some care has to be taken when
the self-interaction issue is considered, as it can manifest in
several ways. As discussed in section IV, even after the localized
states in NiO in SCC-DFTB are corrected, an error of around
half of the experimental band gap still has to be accounted for
by including the derivative discontinuity. A simple method to
include this contribution both to the band structure and to its
effects on the energy for fractionally charged systems is then
presented.

II. Presence of a Ground State in SCC-DFTB

Foulkes and Haydock15 considered the connection between
tight-binding and Kohn-Sham DFT. If in a DFT,Vin makes
nout the ground-state charge density, then as given in eq 25a of
ref 15:

where, as explained in detail in the reference, the energy
functionals ε[nin]TB and E[nout]DFT depend on the input and
output densities of the self-consistent process, respectively. The
charge fluctuations,δn, are given as the difference between the
output and input densities,δn ) nout - nin and abrieviated as
in ref 15:
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Foulkes and Haydock concluded that empirical tight-binding is
a stationary input-only DFT. Non-SCC-DFTB4,7 has the same
stationary behavior asε[nin]TB, but what about self-consistent
charge DFTB?8 From the DFTB choice of expansion reference
charge distribution,natomic, which becomes the input charge
distribution in the final calculation, then

with the intention thatγ is a discretized approximation for

with a point-like model for the charge fluctuations

instead of the field used in eq 1. In this expression,a is either
an atom or a uniquel-shell index depending on whether the
model is atom or atom-shell resolved (both forms of DFTB
being in use for different applications). By comparison with
eq 1 this expression will also be bounded in energy from below
(though not necessarily by the DFT ground state) if the condition
∆qaγab∆qb E ∆qa

2γaa + ∆qb
2γbb is met. This holds as long as

γ(r) decays monotonically with increasingr, and γab(r)0)
E γaa(r)0) + γbb(r)0). The (somewhat complex) current
functional form ofγ,8 by construction, decays as a function of
separation and also obeys the inequality for positive Hubbard
U values. Similarly, the Klopman-Ohno-Mataga-Nishimoto9-11

type of softened Coulombic interaction, of the general form

also is bounded, as it decays monotonically withr, and atr )
0 also meets the requirement of the inequality as long asc
G 1 , asγab(r ) 0) ) (γaa + γbb)/c.

III. Semilocal Orbitally Dependent Functionals

Full self-interaction17 correction or GW18 methods can give
a good description of some systems for which LDA/GGA(/SCC-
DFTB) fail, alternatively hybrid functionals either using a
contribution from raw Hartree-Fock19 or including long-range
screening have been applied. These methods are relatively
expensive, but there are cheaper approximations to them.
LDA+U20 adds contributions from the Hubbard model to mean-
field functional (this is a form of GW20). Alternatively, Pseudo-
SIC removes the local part of self-interaction using projected
atomic states.12 Many of these method have recently been
compared for the volume driven magnetic phase transition of
MnO,21 but we are not aware of a systematic comparison of
these methods for other correlated oxides, such as NiO. Several
of these methods, in particular the hybrid functionals, while
agreeing well with experiment, usually ignore the contribution
to the band gap from the derivative discontinuity.22

We now briefly describe the LDA+U and pseudo-SIC
methods to set the context for their implementation within the
semiempirical framework of SCC-DFTB. As discussed by
Anisimov et al.,20 it is natural to separate electrons into localized
d or f electrons and delocalized s and p electrons. Although for
the latter an orbitally independent one-electron potential (as in

LDA) will suffice, a Hartree-Fock-like interaction better
describes the local interactions. This is of the form (1/2)∑i*jninj,
where ni are the occupancies of the localized shells. If we
assume that the Coulomb energy of the electron-electron
interaction as a function of the total number of electronsN )
ni is well represented by LDA (even if it gives wrong single-
particle energies), then LDA already contains part of this energy.
This must be subtracted from the total energy and instead
replaced with a Hubbard-model-like term. As a result we get
the functional23,24

Strictly speaking, the process of subtracting the double-counting
of the electron-electron interaction of strongly correlated
electrons from the LDA total energy and substituting it with a
Hubbard Hamiltonian-like term is not without ambiguity.

One prescription for an LDA+U can be constructed by
considering uniform occupation of the correlated states, around
a mean-field limit (AMF).23 For strongly correlated systems
(or in the presence of a crystal/ligand field) the limit of uniform
occupancy is not correct. This has led to the suggestion of
another correction in the fully localized limit (FLL).23,24 AMF
and FLL correct the mean field double-counting if the local
occupation numbers are respectively all equal or alternatively
only 0 or 1. Most of the modern LDA+U calculations rely on
one of these two functionals, although in real materials the
occupation numbers should lie between these two limits. Hence
neither AMF nor FLL is strictly speaking correct for real
systems; one should therefore use an interpolation between the
two limits.16 However, AMF and FLL will bracket the correct
limit.

After the initial submission of this manuscript, a third form
of LDA+U was proposed;26 this is functionally similar to the
pseudo-SIC correction discussed in section 3.2, though derived
in a different manner.

A. LDA +U-Like Approach in SCC-DFTB. Although it has
previously been suggested that forempirical tight-binding the
effects of on-site correlation can be mimicked by an empirical
adjustment of symmetry resolved on-site energies,27 this is
problematic for example for low symmetry d electron systems,
or for f manifolds. In these cases, a different correction would
apply, in principle, to eachl andm quantum numbered atomic
state, breaking the rotational symmetry of the method. Similar
problems in maintaining rotational invariance occur on incor-
poration of self-interaction corrected or hybrid functionals into
the parametrization for the non-self-consistent tight-binding
Hamiltonian.

The rotationally invariant form of LDA+U25 bypasses these
problems, with a correction to the LDA potential is of the form

wherenσ is the local spin occupation matrix within a given
atomic manifold, and (Ul - Jl) is the screened and spherically
averaged electron-electron interaction. DC[n] is the double-
counting term, and the two limiting cases FLL and AMF are

wherel is the angular quantum number.
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LDA+U ) -(Ul - Jl)(nµν
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σ [n]FLL ) 1

2
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σ [n]AMF )
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(Ul - Jl) is usually taken to be either an adjustable parameter
or the result of a constrained DFT calculation.28 We instead
present a new prescription for choosingU andJ from atomic
calculations on the basis of a comparison between LDA+U and
a new form of the pseudo-SIC method. Because the SCC-DFTB
energy aims to be a reasonable approximation to the LDA
energy, it seems sensible to adopt the form of the LDA+U
energy correction unchanged for SCC-DFTB.

There is then the issue of how to choose the on-site
occupation matrix29 for a nonorthogonal basis. We present
results for both the on-site30 and the dual basis29 forms of
LDA+U. In the on-site case the modification to the total energy
and the SCC-DFTB Hamiltonian can be written in as functions
of atomic sub-blocks of the single-particle density matrix (F),
whereas for the dual basis case, the occupation matrix takes
the form of a generalization to the Mulliken charges:

where the diagonal of the occupation matrix is then basis-
function-resolved Mulliken charges.

There is a third alternative, the “full” form of the popula-
tions,29 which has some similarity to the projectors described
for correcting for derivative discontinuities in section IV.
However, all of the occupation matrices presented for LDA+U
are atomic shell block-diagonal, unlike the full density matrix
used in section IV.

B. Pseudo-SIC. Full self-interaction corrected LDA is
relatively expensive; hence several cheaper approximations have
appeared. The pseudo-SIC (pSIC) scheme12 and its recent
refinements13,31 project Kohn-Sham states onto a localized
(often confined) atomic basis. Because the majority of the self-
interaction error is local in character this hopefully captures the
majority of the error. In the later variants of the method, local
orbital occupation numbers for that projected basis,pi, are
constructed for each state (i.e.,pi ) 1 for the original method12).
The exchange-correlation and Hartree potentials are then
modified by subtracting off the local self-interaction in this basis:

whereVxc&Hartree is calculated for a fully occupied (n ) 1) and
spin-polarized (m ) 1) state. Additionally, the potential can be
scaled, as discussed in some detail in ref 13,

for example, to account for electronic relaxation on electron
removal (R ) 1/2 in the work of Filippetti and Spaldin; however,
this is incorrect for a system with a single electron31). As yet,
no energy expression related by variational principle to the
potential is available;13,31 hence no expression for interatomic
forces has been derived.

Interestingly, summing over the occupied states in the
projected basis gives the on-diagonal parts of an occupation
matrix

This is not invariant to unitary transforms; however, this was
rectified for the original LDA+U formulation32 by including
off-diagonal elements for each atom block.

Due to the similarity in the functional of the potential to
LDA+U, we can write an energy expression (whichis directly
connected to the potential) as

This is then written as a type of non-double-counted LDA+U
(i.e., DC[n] is absent from eq 8), without ambiguity in the choice
of (U - J) because the pre-factor comes from the exchange-
correlation potential. Additionally, atomic forces can be de-
rived.29

This has some similarity to the ASIC form of Pemmaraju et
al.;31 however, they use the “full” form of the projectors29 and
do not provide a variationally connected energy. This functional
form has also been independently developed by Seo;26 in this
approach the electronic relaxation can be included in the
adjustable U value instead of by use of a scaling parameter.

C. Exchange-Correlation and the Atomic Parameters.
We now discuss an explicit relation between the LDA+U
constants and the on-site LSDA potential. Equation 44 of
Anisimov et al.20 relates the atomicF0 Slater integral and the
exchange,J, to the LDA exchange-correlation potential for an
atomic state as

Thus for the orbital occupation choices for whichVLSDA is
calculated in pSIC for LDA (VLSDA[n)1,m)1], i.e.,N ) Nσ )
1) the spherically symmetric part of the exchange-correlation
potential is

In DFTB, we useU in the SCC-DFTB correction8 and this is
related to the screenedF0 Slater integral by20

Similarly, the diagonal part of the atomic spin coupling matrix,
W, used in spin-polarized SCC-DFTB,33 is equivalent to-Jl/2
(from considering the energy of two parallel spins within the
same shell). If we assume in the zeroth limit that screening in
the isolated atom, for whichU is calculated in this work, is
small (W ≈ 0) then for the basis that is used to expand the
local states in pSIC

nµ∈A,ν∈A
σ )

1

2
∑
B

∑
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R ∑
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σ Vxc&Hartree
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) Vxc&Hartree
σ [n,m] - RVxc&Hartree

σ [n)1,m)1]δµνnµν
σ (15)

Vxc&Hartree
σ [n,m] f Vxc&Hartree

σ [n,m] -

RVxc&Hartree
σ [n)1,m)1]nµν

σ (16)

∆EpSIC ) -R ∑
a

∑
l∈a

Vxc&Hartree
σ [n)1,m)1] ∑

µ∈l,ν∈l

nµν
σ nνµ

σ

(17)

VLSDA
mσ ) F0N - 1

2
(F0 - J) - JNσ (18)

VLSDA
σ [n)1,m)1] ) F0 - J

2
(19)

U ) F0 - Wscreening (20)

Vmσ[n)1,m)1]l
LSDA ≈ (U - J)l

atomic

2
(21)
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(Because in DFTB, U is calculated numerically from atomic
calculations, we actually include this screening contribution.)

In this approximation, pSIC then gives a contribution to the
potential of

By comparison with relaxation-corrected pSIC (R ) 1/2) for a
system with a Hubbard gap, the same potential would be applied
to the lower Hubbard band by a FLL-LDA+U contribution of

Because the fully occupied states in the local manifold experi-
ence a net potential shift of-(U - J)l

atomic/4.
This suggests that LDA+U and relaxation-corrected pSIC

have the same effect on the occupied band structure, and that
U - J ) (U - J)l

atomic/2 is a sensible first choice for the
parameters in LDA+U. This agrees with the (empirical) choice
of ≈0.5(U - J)l

atomic being suitable for many LDA+U ap-
plications.16,20 Because there are different potentials for un-
occupied states in pSIC and FLL-LDA+U these methods give
different gaps,31 and different total energy corrections.

All of the above corrections share the feature that they are
semilocal (decaying on the length scale of the overlap matrix
in the dual basis form); hence they cannot fully address effects
such as the derivative discontinuity in Kohn-Sham theory.34,35

To correct for this effect requires removing the restriction that
only on-site blocks of the occupation matrix must be considered.

1. Explicit DFTB Expressions.For clarity, the explicit
additions used to apply the LDA+U and pseudo-SIC corrections
to spin-resolved SCC-DFTB are now given. The spin-DFTB
energy expressions themselves are given for example in ref 36.
The potential contributions in the three cases can be written as

where

µ and ν are within the samel shell of an atom. In the pSIC
case, this correction is applied to all shells of all atoms, whereas
for LDA+U, only the d/f states are corrected.

The additions to the total energy are

The present results for NiO were obtained using the dual29 basis
form for the orbital occupation matrix,n, as given in eq 11. As
discussed above,R is the scaling introduced in the work of
Filippetti and Spaldin.13

D. NiO. To illustrate the discussion of LDA+U and pSIC
within SCC-DFTB, we now present results for the antiferro-
magnetic II phase of NiO. The present calculations were
performed with the experimental lattice constant for a four-
atom FCC unit cell, using a 123 Monkhorst-Pack37 k-point
sampling grid. TheU andW values used in the present work
are taken from appendix C of ref 38 and are reproduced in
Table 1.

LDA finds this material to be a metal, and LSDA finds a
narrow gap antiferromagnet while severely underestimating the
magnetic moment for each Ni atom. This material is a
prototypical application for LDA+U.20

The density of states around the Fermi level for the three
LDA+U-like methods implemented in SCC-DFTB (FLL, AMF,
and pSIC) with a dual basis occupation matrix are shown in
Figure 1. In the case of the two DFTB+U methods only the
Ni3d shell is corrected, whereas all states are treated with pSIC.
The U andJ parameters are obtained from the atomic values
used in spin-resolved SCC-DFTB. The strength of the correction
is scaled byR , between the spin-SCC-DFTB only limit atR )
0 and the full relaxation uncorrected case atR ) 1. As discussed
above, we suggestR ) 0.5 as a default first choice in accordance
with the suggestion of Filippetti and Spaldin.13 The spin only
magnetic moment and band gap are shown in Figure 2.

For all three corrections, forR J 0.2 a gap opens up between
the t2g Ni3d states at the valence band maximum and the O2p

conduction-band minimum. The unoccupied oxygen-p states
remain unchanged on increasing the magnitude of the correc-
tions, but the Ni-d states drop in energy. For the FLL correction,
there is a band gap collapse atR ≈ 1, when the Ni-d collide
with states aroundEF - 5 eV, which also causes a loss of
magnetism for the Ni (Figure 2). As shown in Table 2, withR
) 0.5, the magnetic moment of the two LDA+U methods is
similar to experimental values, but slightly underestimates the
value (there is also an additional contribution from orbital
magnetism39 which is neglected here). The pSIC results give a
somewhat smaller magnetic moment. Both trends match what
is observed with LSDA+U16,39 and self-interaction corrected
LSDA.40 The obtained band gaps (Eg) are approximatetly half
of the experimental values, with the pSIC case being further
reduced. This again matches the behavior of their DFT
counterparts. As discussed in section IV there is also a
substantial contribution from including effects of derivative
discontinuities.Eg + ∆ is in much closer agreement with the
experiment gap (this procedure should in fact overestimate
optical gaps, due to the absence of excitonic contributions).

IV. Derivative Discontinuities and Gaps

At low temperatures, typical density functionals have a
quadratic energy dependency as a function of total charge in
open systems (this can also apply for the localized LDA+U-
type corrections discussed in section III). The universal density
functional, however, can show sections of straight line segments
between integer numbers of particles42 with an associated jump
in the chemical potential at integer fillings. This behavior of
approximate functionals is due to the failure of cancellation of

∆VpSIC ) -R
(U - J)l

atomic

2
nσ (22)

∆VFLL ) -
(U - J)l

atomic

2 (nσ - 1
2) (23)

(FLL) ∆Vµν
σ ) -R(U - J)l

atomic (nµν
σ - 1

2
δµν) (24)

(pSIC) ∆Vµν
σ ) -R

(U - J)l
atomic

2
nµν

σ (25)

(AMF) ∆Vµν
σ ) -R(U - J)l

atomicδnµν
σ (26)

δnµν
σ ) nµν

σ -

∑
ν

nνν
σ

2l + 1
δµν (27)

∆EFLL ) -R ∑
a

atoms

∑
l∈a

(U - J)l
atomic

2
∑

σ
∑
µν

((nµν
σ )2 - nµν

σ )νµ∈l

(28)

∆EpSIC ) -R ∑
a

atoms

∑
l∈a

(U - J)l
atomic

2
∑

σ
∑
µν

(nµν
σ )νµ∈l

2 (29)

∆EAMF ) -R ∑
a

atoms

∑
l∈a

(U - J)l
atomic

2
∑

σ
∑
µν

(δnµν
σ )νµ∈l

2 (30)
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the self-interactions of the Coulombic and exchange correlation
contributions to the energy (For neutral systems, however, this
at least allows for the possibility of a derivative discontinuity).
This then has implication for the single-particle gap in Kohn-
Sham-like theories.34,35 Additionally, this has recently been
shown to impact on transport properties calculated with DFT
and related techniques.43

For the original non-self-consistent DFTB, because the band
structure is independent of the number of particles, then
automatically the energy shows such discontinuities on filling

nondegenerate levels. Similarly, the chemical potential jumps
at even filling. SCC-DFT, as with the usual DFT functionals,
does not show such behavior due to the self-interaction of the
long-range Hartree-like contributions.

For a nondegenerate system with integer total number of
particles (N), at low temperatures the reduced single-particle
density matrix of the system is idempotent (i.e., it has eigen-
values,ni ∈ {0, 1} , and hence the density matrix equals its
own square, because for all occupation numbersni ) ni

2). For
a nonorthogonal basis this requires that

where the matrix product usesF, the reduced single-particle
density matrix, andS the overlap matrix of the basis in which
it is represented. For a noninteger number of particles,N (and
also for degenerate systems in an ensemble average state), some
states of the system must instead have fractional single-particle
occupation numbers, 0< ni < 1, then the condition expressed
in eq 31 is violated (but only for the subspace of the single-
particle density matrix including such states). This relation then
gives a method of projecting out a function of such fractionally
occupied states. Hence, because the error in the approximate
functional on going between a nondegenerateN particle system
and anN + 1 system is normally quadratic in occupation of
these fractionally occupied states, this gives a method to correct
the energy to give the desired discontinuity.

One side issue is that of the spin degrees of freedom. If a
spin-unpolarized approach is used, the idempotency condition
will only be met for occupations equivalent to an even number
of particles, hence any correction built on this approach would
introduce the derivative discontinuity at even fillings (instead
of all integers). Hence, as an alternative to constructing a
projector using eq 31, these corrections can be written directly
in terms of occupation number in a diagonal representation.

Because the approximate density functionals are usually
considered to give a good estimate of the energy at integer
particle numbers, a correction that leaves the energy of such
systems unchanged is desirable. Choosing an energy contribution
of the form

for which there is no energy contribution for idempotent
matrices, withc(N ) given by

For a purely quadratic error in the functional,c(N ) ) c(N). In
the case of systems with a HOMO-LUMO gap, there is a
discontinuity present even in approximate functionals; hence a
distinction should be made between derivatives going toward
greater or fewer particle numbers.

The associated contribution to the potential is then

which is linear in occupation number and has the form of a
scissor operator between the occupied and un-occupied orbitals.

For c(N ), in the present examples this is evaluated numeri-
cally; however, it is possible to obtain this analytically, either
from the second derivative of the energy as with eq 33, or as a

TABLE 1: Reproduction of the Atomic U and W Values
(au) Taken from Ref 38

U s p d W d p s

O 0.397 0.364 - p -0.027
s -0.028 -0.032

Ni 0.256 0.227 0.487 d -0.017
p -0.001 -0.010
s -0.003 -0.009 -0.009

Figure 1. Density of states around the Fermi level for NiO in the
AMF-II configuration using the three on-site corrections discussed in
section III.

F - F‚S‚F ) 0 (31)

∆EDD ) ∑
σ

c(N )

2
Tr(S‚(Fσ - Fσ‚S‚Fσ)) (32)

c(N ) )
∂

2E(N )

∂N 2
(33)

∆VDD
σ ) c(N)(S2 - S‚Fσ‚S) (34)
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first derivative of the HOMO level energy with respect to total
charge by using Janak’s theorem44 and linear response.45

A. Application of the Derivative Discontinuity Correction.
Functionals with the correct derivative discontinuity should have
band gaps consistent with the thermodynamic charge-transfer
gap, i.e.,E(N + 1) + E(N - 1) - 2E(N), whereN is the number
of electrons in the neutral state. This thermodynamic definition
should matchεLUMO - εHOMO, and this then gives a simple test
for the validity of the proposed correction (if we assume
relaxation effects in the charged systems are small). In principle,
when comparing with optical gaps, however, one should also
incorporate final state excitonic effects, but these have not been
considered. Table 3 shows the thermodynamic and band-
structure gaps of four small aromatic systems. These are example
systems for molecular electronic devices, where two CuS
contacts have replaced H atoms. The original SCC-DFTB band
gaps do not agree well with the thermodynamic gaps, but
applying the above scissor-like correction brings the band
structure into much close agreement (but overestimating the gap
in the FLL and AMF cases). Additionally, the chemical potential
of the system now discontinuously jumps at integer occupation

of the system, as would be required for example in a correct
simulation of Coulomb blockade.

This correction has also been applied on-top of the local
correlation corrections for NiO; see Table 2. This substantially
improves the agreement with the observed optical gap (the
correction accounts for nearly half of the band gap in this case).

V. Conclusions

This work discusses the connection between SCC-DFTB and
the results of Foulkes and Haydock on the properties of tight-
binding. Having demonstrated that SCC-DFTB has a well-
defined ground state (bounded from below in energy), we
discussed the issue of adding extra contributions to the DFTB
expressions to produce ground states closer to the correct
chemistry and physics of the system. For localized states, the
connection between LDA+U and pseudo-self-interaction cor-
rections is presented, giving a new prescription for a parameter
free LDA+U and, for the first time, variationally connected
pSIC energies and potentials. The developed methods are then
tested on NiO, producing good agreement with density-
functional based methods in the literature.

A further correction for the (absent) derivative discontinuity
in SCC-DFTB and (many) DFT functionals is then suggested
and applied to example molecular systems as well as NiO. The
proposed correction improves the agreement between the single-
particle levels and the thermodynamic HOMO-LUMO gap. In
the case of NiO this is shown to bring the derived gap into
much closer agreement with experiment.
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